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Nonextensive statistical mechanics, pioneered by Tsallis, has recently achieved a generalization of the
Gutenberg-Richter law for earthquakes. This remarkable generalization is combined here with natural time
analysis, which enables the distinction of two origins of self-similarity, i.e., the process’ memory and the
process’ increments infinite variance. By using also detrended fluctuation analysis for the detection of long-
range temporal correlations, we demonstrate the existence of both temporal and magnitude correlations in real
seismic data of California and Japan. Natural time analysis reveals that the nonextensivity parameter q, in
contrast to some published claims, cannot be considered as a measure of temporal organization, but the Tsallis
formulation does achieve a satisfactory description of real seismic data for Japan for q=1.66 when supple-
mented by long-range temporal correlations.
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I. INTRODUCTION

It is well known that seismicity exhibits power laws chief
among of which are the following three: first, the Gutenberg-
Richter �G-R� distribution

P�E� � E−� �with � � 5/3� �1�

of earthquake �EQ� energies E, which alternatively states that
the �cumulative� number of earthquakes with magnitude
greater than m occurring in a specified area and time is given
by

N��m� � 10−bm, �2�

where b is a constant, which varies only slightly from region
to region �cf. Eq. �2� holds both regionally and globally�
being generally in the range 0.8�b�1.2 �see Ref. �1� and
references therein�. Considering that the seismic energy E
released during an earthquake is related �2� to the magnitude
through E�10cm, where c is around 1.5, Eq. �2� turns to Eq.
�2�, where �=1+b /1.5. Hence, b�1 means that the expo-
nent � is around �=1.6–1.7. Second, the Omori law de-
scribes the temporal decay of aftershock activity and its
modified form �3� �see also Ref. �4�� is given by the relation

r�t,m� =
1

�0�1 + t/c�m��p , �3�

where r�t ,m� is the rate of occurrence of aftershocks with
magnitudes greater than m per day, t is the time that has
elapsed since the mainshock, and �0 and c�m� are character-
istic times. Note that p�1 for large earthquakes �e.g., see
Ref. �5��. Third, the Båth law �6� according to which the
difference in magnitude �m between a mainshock and its
largest detected aftershock is approximately a constant inde-
pendent of the mainshock magnitude, typically �m�1.2.
These three laws have been incorporated in Ref. �4� to give a
generalized Omori law for aftershock decay rates that depend
on several parameters specific for each given seismogenic

region. There exist additional power laws referring to the
distribution �1 /L2 of fault lengths L �7�, the fractal structure
of fault networks �8�, as well as the universal law for the
distribution of waiting times and seismic rates derived by
Bak et al. �9� from the analysis of space-time windows. It is
widely accepted �10–12� that these earthquake scaling laws
indicate the existence of phenomena closely associated with
the proximity of the system to a critical point �13�. Devia-
tions from these scaling laws have been observed and their
explanation have also attracted a great interest �e.g., see Ref.
�14� and references therein�. Despite the intense efforts, how-
ever, the mechanism behind the complex spatiotemporal be-
havior of earthquakes still remains a major challenge
�15,16�.

Nonextensive statistical mechanics �17,18�, pioneered by
Tsallis �19�, provides a consistent theoretical framework for
the studies of complex systems in their nonequilibrium sta-
tionary states, systems with �multi�fractal and self-similar
structures, long-range interacting systems, etc. This frame-
work offered recently a generalization of the G-R law �see
Sec. II for details�. It is the main object of the present study
to show that this nonextensive G-R generalization does en-
able an improved study of the observed seismic data fluctua-
tions. To achieve this goal we combine this G-R generaliza-
tion with another time domain, termed natural time �20,21�,
which has been shown to reveal novel dynamic features hid-
den behind the time series of complex systems in diverse
fields �e.g., earth sciences �21–24�, biology �21�, electrocar-
diograms �25�, and physics �26��. This time domain �see Fig.
1 that will be discussed later�, when employing the Wigner
function �27� and the generalized entropic measure proposed
by Tsallis �19�, has been demonstrated �28� to be optimal for
enhancing the signal’s localization in the time-frequency
space �29�, which conforms to the desire to reduce uncer-
tainty and extract signal information as much as possible.
Natural time analysis enables the study of the dynamic evo-
lution of a complex system and identifies when the system
approaches the critical point. This occurs when the value of
the variance of natural time ��2�− ���2 �	�1� �see Sec. III�
becomes equal �21–24� to 0.070. In addition, natural time
enables the distinction �30� of the two origins of self-*Corresponding author; pvaro@otenet.gr
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similarity observed in signals emitted from complex systems
as it will be further discussed below.

Complex systems usually exhibit irregular behavior which
at first looks erratic, but in fact possesses scale-invariant
structure �e.g., see Ref. �31��. A process 
X�t��t	0 is called
self-similar �32� if, for some H�0,

X�
t� = 
HX�t� ∀ 
 � 0, �4�

where the symbol of equality refers here to all finite-
dimensional distributions of the process on the left and right,
and the parameter H is called the self-similarity index or
exponent. Equation �4� means a “scale invariance” of the
finite-dimensional distributions of X�t�, which does not im-
ply, in stochastic processes, the same for the sample paths
�e.g., see Ref. �33��. Examples of self-similar processes are
Brownian, fractional Brownian motion �fBm�, and Lévy
stable and fractional Lévy stable motion �fLsm�. Lévy stable
distributions �which are followed by many natural processes,
e.g., �34�� differ greatly from the Gaussian ones because they
have heavy tails and their variance is infinite �e.g., �33,35��.

When analyzing data from systems that exhibit scale-
invariant structure the following important question raises: in
several systems this nontrivial structure points to long-range
temporal correlations; in other words, the self-similarity re-
sults from the process memory only. This is the case, for
example, of fBm or of seismic electric signal �SES� activi-
ties. The latter are transient low-frequency ��1 Hz� electric
signals emitted before earthquakes �36� presumably as fol-
lows �37,38�: beyond the usual intrinsic lattice defects �39�
in ionic solids doped with aliovalent impurities, extrinsic de-
fects are formed that are attracted by the nearby impurities,
thus forming electric dipoles the relaxation time of which
may decrease in the focal area of an impending earthquake as
the stress gradually increases. When the stress �pressure�
reaches a critical value, a cooperative orientation of these
dipoles occurs, which leads to the emission of a transient
signal that constitutes the SES activity characterized by criti-
cal dynamics �infinitely ranged temporal correlations
�21,23��. Alternatively, the self-similarity may solely result

from the process’ increments “infinite” variance, e.g., Lévy
stable motion �cf. but extreme events have to be truncated for
physical reasons �40��. In general, however, the self-
similarity may result from both these origins �e.g., fLsm�. In
Refs. �30,41� it was discussed in detail �see also Sec. III�
how a distinction of the two origins of self-similarity �i.e.,
process’ memory and process’ increments infinite variance�
can be in principle achieved by employing the natural time
analysis.

In order to quantify the long-range temporal correlations,
here we make use of the detrended fluctuation analysis
�DFA� �42,43�, which has been established as a robust
method suitable for detecting long-range power-law correla-
tions embedded in nonstationary signals �for recent applica-
tions on DFA see Ref. �44��. This can be summarized as
follows. We first sum up the original time series and deter-
mine the profile y�i�, with i=1, . . . ,N. We then divide this
profile of length N into N / l �	Nl� nonoverlapping fragments
of l observations. Next, we define the detrended process
yl,��m�, in the �th fragment, as the difference between the
original values of the profile and the local linear trend. We
then calculate the mean variance of the detrended process:
F2�l�= �1 /Nl���=1

Nl f2�l ,��, where f2�l ,��= 1
l �m=1

l yl,�
2 �m�. If

F�l�� l
, the slope of the log F�l� versus log l plot leads to
the value of the exponent 
DFA	
. �This scaling exponent is
a self-similarity parameter that represents the long-range
power-law correlations of the signal.� If 
DFA=0.5, there is
no correlation and the signal is uncorrelated �white noise�; if

DFA�0.5, the signal is anticorrelated; and if 
DFA�0.5, the
signal is correlated and specifically the case 
DFA=1.5 cor-
responds to the Brownian motion �integrated white noise�.

Thus, the procedure proposed here combines three mod-
ern methods, i.e., the nonextensive extension of the G-R law
together with natural time and DFA. It will be applied in Sec.
IV to synthetic seismic data as well as to real seismic data
from two different areas, i.e., San Andreas fault system and
Japan: in particular the EQs that occurred during the period
of 1981–2003 within the area N32

37W114
122 using the Southern

California Earthquake catalog will be hereafter called SCEC
�see Figs. 2–4 that will be discussed later�. Second, the EQs
within N25

46E125
146 for the period of 1967–2003 using the Japan

Meteorological Agency catalog will be hereafter simply
called “Japan” �see Figs. 2–4�. The thresholds m	2.0 and
m	3.5 have been considered for SCEC and Japan, respec-
tively, for the sake of data completeness.

II. NONEXTENSIVITY AND EARTHQUAKES

The first studies on the analysis of EQs have been made
by Abe and co-workers �17,45,46�. In particular, Abe and
Suzuki found that the cumulative distribution of interoccur-
rence times and the distances between successive EQs can be
described by the q-exponential distribution with q�1 �46�
and with q�1 �45�, respectively, by analyzing Japan and
southern California earthquake data. They then proposed a
conjecture stating that qt+qs
2, where qt and qs represent
the values of the q parameter for temporal and spatial distri-
butions, respectively �45�. Interestingly, this conjecture has
been found to be verified by the seismic activities in Iran’s

m

conventional time t

E

natural time χ

(a)

(b)

FIG. 1. �Color online� How a series of earthquakes in �a� con-
ventional time is read in �b� natural time. The symbols m and E
stand for the magnitude and the energy in the upper and lower
panels, respectively.
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faults �47� and reproduced semiquantitatively in recent stud-
ies of the two-dimensional Burridge-Knopoff model �48�.
Furthermore, Tirnakli and Abe �49� by employing natural
time studied the event correlation between aftershocks in the
coherent noise model which is an important example and
robust mechanism that produces scale-free behavior in the
absence of criticality �in contrast to the well-known case of
self-organized criticality �SOC� �50�, where the whole
system—under the influence of a small driving force that
acts locally—evolves toward a critical stationary state having
no characteristic spatiotemporal scales without fine-tuning
parameters�. Tirnakli and Abe �49� found that the aging phe-
nomenon and the associated scaling property discovered in

the observed seismic data are well reproduced by the model.
They also found that the scaling function is given by the
q-exponential function appearing in nonextensive statistical
mechanics showing power-law decay of event correlation in
natural time.

An interesting model for earthquake dynamics related to
the Tsallis nonextensivity framework has been proposed by
Sotolongo-Costa and Posadas �SCP� �51�. It consists basi-
cally of two rough profiles interacting via fragments filling
the gap between them where the fragments are produced by
local breakage of the local plates. In other words, the funda-
mental idea of this model consists of the fact that the space
between faults is filled with the residues of the breakage of
the tectonic plates from where the faults originate. In this
model the mechanism of earthquake triggering assigns an
important role in the fragments: the stress increase between
the two fault plates constitutes the main factor that governs
the complexity of the fragment-asperity interaction, where
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FIG. 2. �Color online� The probability density function P��1�
versus �1 resulting from the natural time analysis of temporally
uncorrelated data obtained from Eq. �9� for various q values to-
gether with those deduced from real seismic data for SCEC and
Japan.
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FIG. 3. �Color online� The DFA of the original magnitude time
series for SCEC �red plus signs� and Japan �blue circles�. The thin
and thick straight lines correspond to the short- and the long-scale
linear least-squares fit, respectively. The existence of a crossover at
l�200 leads to the extra complexity in the case of earthquake time
series. For this reason, synthetic time series obeying the G-R law
�Eq. �2�� with b=1.08 have been produced. Their DFA is shown
with the thick black �solid� and green �long-dashed� broken lines for
SCEC and Japan, respectively. The DFA of Japan has been dis-
placed for the sake of clarity.
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FIG. 4. �Color online� �a� The probability density function P��1�
versus �1 for SCEC �plus signs� together with G-R distributed data
with b=1.08 �red dotted line� having the same magnitude correla-
tions as the original data �see the black �solid� broken line in Fig.
3�. The green �long-dashed�, black �solid�, blue �short-dashed�, and
light blue �dashed-dotted� lines depict P��1� versus �1 as it results
for earthquakes distributed according to Eq. �9� for q=1.65, 1.66,
1.67, and 1.68, respectively, when again taking into account the
magnitude correlations of the original data. �b� The same as in �a�
for Japan �circles�, but here only the case of q=1.66 �green long-
dashed line� is shown.
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eventually the fragments may act as roller bearings, and also
as hindering entities of the relative motion of the plates until
the growing stress produces their liberation with the subse-
quent triggering of the earthquake �52�. By using the nonex-
tensive formalism �but see below�, SCP not only showed the
influence of the size distributions of fragments on the energy
distribution of earthquakes but also deduced an energy-
distribution function which in a particular case leads to the
G-R law.

The aforementioned SCP model was revisited by Silva et
al. �53� who made two key improvements. The first one
made use of a different definition for mean values in the
context of Tsallis nonextensive statistics that was achieved in
the pioneering study of Ref. �54�. In particular, Abe and
Bagci �54� considered in depth the two kinds of definitions
for the expectation value of a physical quantity which both
lead to the maximum Tsallis entropy distribution of a similar
type: the one is the ordinary definition �cf. this was used by
SCP� and the other is the normalized q-expectation value
employing the escort distribution �55,56�. Their final conclu-
sion states that the Shore-Johnson theorem �57� for consis-
tent minimum cross-entropy �i.e., relative entropy� principle
is shown to select the formalism with the normalized
q-expectation value and to exclude the possibility of using
the ordinary expectation value from nonextensive statistical
mechanics. The second improvement by Silva et al. refers to
the introduction of a scale law, i.e., ��r3, between the re-
leased relative energy � and the size r of fragments �This
substantially differs from the assumption ��r used by SCP.�
Then Silva et al. proceeded as follows: the Tsallis entropy
has the form

Sq = kB


 pq����p���1−q − 1�d�

q − 1
, �5�

where p��� is the probability of finding a fragment of rela-
tive surface � �which is defined as a characteristic surface of
the system�, q is a real number usually termed nonextensive
parameter, and kB is the Boltzmann constant which will be
hereafter set equal to unity for the sake of simplicity. It is
easy to see that Eq. �5� recovers the standard Boltzmann-
Gibbs entropy in the limit q→1. The maximum entropy for-
mulation for Tsallis entropy implies that the following two
conditions have to be introduced �18,58�: first, the normal-
ization of p���:



o

�

p���d� = 1, �6�

second, the ad hoc condition about the q-expectation value:

�q 	 ���q = 

o

�

�pq���d� , �7�

which for q→1 becomes the definition of the mean value.
Silva et al. followed the standard method of conditional ex-
tremization of the entropy functional Sq and found an expres-
sion for the fragment distribution p���. Then, assuming the
aforementioned energy scale ��r3, they obtained the

energy-distribution function p��� for the EQs. Finally, by
considering the relationship

m = 1
3 ln��� , �8�

where m denotes the magnitude, Silva et al. obtained the
number N�m of EQs with magnitude larger than m:

log�N�m

N
� = �2 − q

1 − q
�log�1 − �1 − q

2 − q
�102m

a2/3 � , �9�

where N is the total number of the events and a is the pro-
portionality constant between � and r3. Equation �9� incorpo-
rates the characteristics of nonextensivity into the distribu-
tion of earthquakes by magnitude and the G-R law can be
deduced as its particular case, i.e., above some magnitude
threshold Eq. �9� reduces to Eq. �2� with b=2�2−q� / �q−1�.
Thus, Eq. �9� can be alternatively termed as a generalized
G-R law. This relation has been found to describe appropri-
ately the energy distribution in a wider detectable range of
magnitudes compared to that of the original G-R law �59�.
Furthermore, Silva et al. �53� and later Vilar et al. �59� in
conjunction with the earlier SCP study �51� led to the con-
clusion �59� that values of q�1.6–1.7 seem to be universal
in the sense that different data sets from different regions of
the globe �e.g., California �51�, Iberian Peninsula �51�, An-
dalucia �51�, Samambaia-Brazil �53�, New Madrid, USA
�53�, North Anatolian fault, Turkey �53�, San Andreas fault,
USA �59�� indicate a value lying in this interval. In addition,
in a very recent study �52�, a comparable q value �i.e., q
=1.67� has been found by analyzing the �tectonic� seismicity
in Italy, while a somewhat lower value �q=1.48� for the vol-
canic seismicity in Vesuvius. Finally, we note that very re-
cently �60�, an alternative relation has been suggested be-
tween the released energy and the surface size of fragments,
i.e., ��exp��1/�0�, where �0 is a constant in contrast to the
relation ���1/2 proposed by SCP �51� and the relation
���3/2 by Silva et al. �53�. This, which has been inspired by
the fractal nature of the fragments filling the gaps between
adjacent fault plates, leads to a different expression for the
distribution of EQs as a function of the magnitude which has
a q-exponential form, and the fit with the Iran and California
catalogs was found to be good. On the other hand, Eq. �9�
has no q-exponential form, but it is preferred to be used in
Sec. IV since it has been found to describe well the data in a
larger number of seismic regions.

III. NATURAL TIME AND EARTHQUAKES

In a time series consisting of N events, the natural time
�k=k /N serves as an index �20,21� for the occurrence of the
kth event. It is, therefore, smaller than or equal to unity. For
the analysis of seismicity, the evolution of the pair ��k ,Ek� is
considered �20,22,61–63�, where Ek denotes the seismic
energy released during the kth event; see Fig. 1 �cf. this
energy—which is itself proportional to the seismic
moment M0—and hence we can use in the vertical axis of
Fig. 1�b� either Ek or �M0�k�. Using �=2��, and �, the
natural frequency, the following continuous function ����
was introduced �20–22�:
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���� =

�
k=1

N

Ek exp�i�
k

N
�

�
n=1

N

En

= �
k=1

N

pk exp�i�
k

N
� , �10�

where pk=Ek /�n=1
N En. A kind of normalized power spectrum

���� can now be defined: ����= ������2. We focus on the
properties of ���� or ���� for natural frequencies � less
than 0.5 since in this range of �, ���� or ���� reduces
�20–22,61� to a characteristic function for the probability
distribution pk in the context of probability theory. According
to the probability theory, the moments of a distribution and
hence the distribution itself can be approximately determined
once the behavior of the characteristic function of the distri-
bution is known around zero. For �→0, a Taylor expansion
of ���� leads to �20,21,61� �����1−�1�2, where
�1= ��2�− ���2 is the variance of natural time. ���� as
�→0 �or �1� has been shown to be an order parameter for
seismicity �63�. For critical dynamics, the following relation
holds �20,22,24�:

�1 = 0.070. �11�

Furthermore, natural time analysis was found to lead, in
general, to the identification of the origin of self-similarity as
follows �30�: first, if self-similarity results from the process’
memory only, the �1 value should change to the �1 value of
the “uniform” distribution �u=1 /12 for the �randomly�
shuffled data. Second, if the self-similarity exclusively results
from process’ increments infinite variance, the �1,p value, at
which the probability density function P��1� �see below�
maximizes, should be the same �but different from �u� for
the original and the randomly shuffled data. This procedure
answers, for example, the fundamental problem of distin-
guishing between stochastic models characterized by differ-
ent statistics, e.g., between fractal Gaussian intermittent
noise and Lévy-walk intermittent noise, which may equally
well reproduce some patterns of a time series �35,64�. When
both sources of self-similarity may be present in the time
series �as in the case of seismicity analyzed here� quantita-
tive conclusions on their relative strength can be obtained on
the basis of Eqs. �12� and �13� of Ref. �30� by means of the
procedure described in Ref. �41�. In particular, the case of
real earthquake data, for which several studies point to the
conclusion that exhibit complex patterns of magnitude, spa-
tial, and temporal correlations �65–67� the following proce-
dure was applied �this will be used in the next section�: by
calculating the �1 value in a window of length l=6–40 con-
secutive events sliding through either the original earthquake
catalog or a shuffled one, the probability density function
P��1� can be constructed. The following results have been
obtained for SCEC and Japan: comparing the �1,p values, we
find that �1,p�0.066 for the original data while
�1,p�0.064 for the surrogate data. �We clarify that upon
shuffling the original data, beyond this decrease in the �1,p
value from �1,p�0.066 to �1,p�0.064, the whole feature of
the curve P��1� versus �1 is changed markedly as can be
seen in Fig. 5 of Ref. �30�.� Both these �1,p values �with a

plausible uncertainty of �0.001� differ markedly from the
value �u=1 /12. This was interpreted as reflecting that the
self-similarity mainly originates from the process’ incre-
ments infinite variance. Additionally, since the �1,p value of
the original EQ data does not greatly differ from the value
�1�0.070 found �30� in infinitely ranged temporal correla-
tions, this indicates the importance of temporal correlations
rather than their absence, in the EQ catalogs. In other words,
the temporal correlations are responsible for the difference
between the value of �1,p�0.064 of the surrogate data and
the value of �1,p�0.066 of the original data. Reference �41�
sheds more light on the presence of temporal correlations in
seismicity data by considering, beyond the natural time
analysis, the correlation function suggested recently in Ref.
�67�.

IV. RESULTS BY COMBINING NONEXTENSIVITY WITH
NATURAL TIME

We first explain the procedure followed here for the gen-
eration of synthetic seismic data �magnitude series�. The
general problem of producing surrogate data sets containing
random numbers with a given sample power spectrum and a
given distribution of values has been treated in detail in Ref.
�68�. Here, we use a simplified method to produce long-
ranged correlated �EQ� data �magnitude series� that obey an
arbitrary cumulative distribution function F�x�. This is based
on the well-known random number generator of an arbitrary
distribution F�x�, described in Ref. �69�, as well as on the
method suggested in Ref. �66�. Let us first recall that in order
to construct �69� a random number generator for the distri-
bution F�x� �=p�, we simply need the inverse function F−1�p�
�=x�; then by inserting a �uncorrelated� random sequence pi
of numbers uniformly distributed in the region �0,1�, we can
obtain the �uncorrelated� random numbers xi=F−1�pi� which
are distributed according to the cumulative distribution func-
tion F�x�. Here, we took advantage of the fact that, at least,
for the exponential �G-R law� and the distribution function of
Eq. �9�, if the sequence pi is long-range correlated, the same
holds for the random numbers xi �=F−1�pi�� �see, for ex-
ample, the broken lines in Fig. 3�. For example, if we want to
produce a series of random numbers xi that have a DFA
exponent equal to 
 ��1�, we can use xi=F−1��G�zi��, where
�G�t� is the cumulative distribution function of the standard
normal �Gaussian� distribution and zi is a standard fractional
Gaussian noise �i.e., with mean equal to zero and unit stan-
dard deviation� with H=
 �e.g., see Ref. �70��. Moreover, if
we want the generated data to mimic the temporal correla-
tions of some experimental data yi, then by using their �ex-
perimental� cumulative distribution function �y�t�, we can
use xi=F−1��y�yi��. This simple method for the sake of con-
venience will be hereafter called cumulative distribution
function transformation �CDFT�.

Figure 2 shows the probability density function P��1� ver-
sus �1 deduced from the natural time analysis of synthetic
records of �temporally� uncorrelated �
=0.5� seismic data
obeying the nonextensive generalization of the G-R law, i.e.,
Eq. �9�. Results are given for four different values of q, i.e.,
q=1.62, 1.64, 1.65, and 1.68, lying in the universal range
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q=1.6–1.7 suggested by Vilar et al. �59�. In the same figure,
for the sake of comparison, the results obtained from the real
seismic data, i.e., SCEC and Japan, are also plotted. An in-
spection of this figure shows that the results from synthetic
data differ markedly from those of the real data. This reveals
that, since in natural time analysis the waiting �interoccur-
rence� times between EQs do not intervene, temporal corre-
lations do exist in the �magnitude time series of� real seismic
data. This is in agreement with the results of Ref. �63� in
which we showed that the G-R law cannot fully account for
the complexity observed in the real seismic data.

Thus, as a second step, we investigated whether synthetic
data obeying Eq. �9� can reproduce the real situation when
inserting long-range temporal correlations. To quantify the
long-range temporal correlations, in the real seismic data, we
depict the DFA plots in Fig. 3 for the original magnitude time
series of SCEC �red plus signs� and Japan �blue circles�. The
thin and the thick straight lines result from a linear least-
squares fit to the short �log10�l��2� and long
�log10�l�	2.5� scales, respectively, for SCEC �red dotted
lines� and Japan �blue short-dashed lines�. At the short
scales, the values of the slope are 
=0.61�2� and 0.57�2� for
SCEC and Japan, respectively. These values are comparable
to those obtained by Lennartz et al. �16� by analyzing the
seismic records in regimes of stationary seismic activity in
Northern and Southern California �i.e., during periods of
both catalogs where large aftershock sequences are missing�.
At larger scales, a crossover is evident in Fig. 3 at l�200
above which the slopes are found to be 
=0.93�3� and
0.83�3� for SCEC and Japan, respectively.

The aforementioned DFA behavior �i.e., smaller 
 value
at short scales and larger 
 at long scales� of the real seismic
data was then reproduced by synthetic �obtained from CDFT
of the original� seismic data coming from the G-R law with
b�1.08, the DFA plots of which are shown in Fig. 3 with the
broken straight lines �solid black and long-dashed green lines
for SCEC and Japan, respectively�. Figure 4 depicts P��1�
versus �1 plots for the real seismic data of SCEC �Fig. 4�a��
and Japan �Fig. 4�b�� along with those obtained from these
synthetic G-R data �red dotted lines�. The good agreement
between synthetic and real data probably reflects the fact that
only EQs above the magnitude completeness threshold have
been considered.

To proceed one step further, synthetic seismic data were
deduced by using Eq. �9�, instead of the G-R law, and CDFT.
In particular, for SCEC by adopting q=1.65, 1.66, 1.67, and
1.68 and inserting �by means of the CDFT procedure de-
scribed in the first paragraph of this section� long-range
�temporal� magnitude correlations comparable to those found
in real data, i.e., 
=0.57 and 0.93 for short and long scales,
respectively, we obtain the green �long-dashed�, black
�solid�, blue �short-dashed�, and light blue �dashed-dotted�
lines in Fig. 4�a�. We observe that the q=1.67 curve is closer
to the real data but some differences still remain. As for
Japan �see Fig. 4�b��, the synthetic long-range correlated data
that come from Eq. �9� with q=1.66 �green long-dashed line�
with 
=0.61 and 0.83 for the short and long scales, respec-
tively, exhibit much better agreement with the real ones. This
agreement between synthetic and real data can be considered
as satisfactory if we recall that there exists a considerable

deviation between them in Fig. 2 where the results have been
obtained from the natural time analysis of synthetic data that
were directly computed from Eq. �9� by ignoring long-range
temporal correlations.

V. DISCUSSION

Recapitulating the results obtained in the previous section,
as well as those discussed in Refs. �30,41�, we can say that
natural time analysis of real seismic data for both SCEC and
Japan reveals that long-range �temporal� correlations be-
tween earthquake magnitudes do exist. This finding, which
agrees with the results obtained by independent analyses of
real seismic data in Refs. �67,71� through a different proce-
dure, also corroborates with a recent theoretical study by
Woodard et al. �72� of SOC systems. The latter study shows
that the memory of past events �avalanches� is stored in the
system profile and that the existence of these correlations
contradicts the notion that a SOC time series is simply a
random superposition of events with sizes distributed as a
power law �as has been claimed by several previous studies�.
This is the notion that was initially interpreted that in SOC
systems an event “can occur randomly anywhere at any time
and cannot ‘know’ how large it will become,” which was
proven in Ref. �72� to be a misconception.

We now discuss the present results in comparison to those
deduced in a recent study by Caruso et al. �73�. In this inter-
esting study, they performed an analysis of the dissipative
Olami-Feder-Christensen �OFC� model �74�—which is a
well-known SOC model—on a small-world topology by
considering avalanche size differences. Caruso et al. found
that, when criticality appears, the probability distribution
function for the avalanche size differences at different
times has fat tails with a q-Gaussian shape. The latter,
which is typical of Tsallis statistics �75�, has the form
f�x�=A�1+ �q−1�x2 /B�1/�1−q� which generalizes the standard
Gaussian curve depending on the parameters A, B, and on the
exponent q �cf. for q=1 the normal distribution is recovered,
and q�1 indicates a departure from Gaussian statistics�. In
particular, Caruso et al. found that the q-Gaussian curve that
describes well the OFC behavior in the critical regime yields
a value q=2.0�0.1. Note also that the avalanche size � was
taken as equivalent to the energy and that the power-law
exponent � of the avalanche size distribution ���−�� was
determined to be �=1.8�0.1. In order to compare their the-
oretical results with actual seismic data, Caruso et al. re-
peated their analysis for the worldwide catalog �WWS�
�comprising 689 000 earthquakes during 2001–2006� and the
Northern California Catalog �NCEC� �comprising around
400 000 earthquakes during 1966–2006�. By considering the
quantity exp�m� �which is related to the energy of an earth-
quake, but see also below� as corresponding to the avalanche
size � of the OFC model, they found the exponents
�=2.7�0.2 and �=3.2�0.2 for WWS and NCEC, respec-
tively. In both these actual seismic data sets, Caruso et al.
found that the probability density function of the energy dif-
ferences between earthquakes can be fitted by a q-Gaussian
curve obtaining an exponent q=1.75�0.15. This q value is
comparable �within the errors� with both the q value reported
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here as well as the q value they found for the OFC model.
Another important finding of Caruso et al. �73� is that

they reported an interrelation between the following two
quantities: first, the power-law exponent � of the avalanche
size distribution and second the q parameter of the
q-Gaussian that describes the probability density function
P���� of the differences �� between the avalanche sizes at
time t+� and time t �� is an integer; Caruso et al. considered
�=1 for consecutive time steps as in natural time�. Under the
condition that there is no correlation between the sizes of
two events, the probability P���� of obtaining the difference
��=��t+��−��t� is given by �73�

P���� = K
�−�2�−1�

2� − 1 2F1��,2� − 1;2�,−
����

�
� , �12�

where K is a normalization factor, � is a small positive value,
and 2F1 is the hypergeometric function. P����, which of
course depends on �, can be approached by means of
q-Gaussian with �-independent q value. Caruso et al., by
applying Eq. �12� for various � values, found the following
stretched exponential interrelation between q and �:

q = exp�1.19�−0.795� . �13�

Caruso et al. made an attempt toward investigating whether
Eq. �13� is obeyed by the aforementioned values obtained
from the analysis of WWS and NCEC. In particular, it was
found that the value q=1.75�0.15 is more or less compat-
ible �in the frame of Eq. �13�� with the � values, i.e.,
�=2.7�0.2 and �=3.2�0.2 for WWS and NCEC, respec-
tively, if the experimental errors are considered. In view of
the latter errors, Caruso et al. considered this result with
caution since they also noticed that “although temporal �and
spatial� correlations among avalanches �earthquakes� do
surely exist and a certain degree of statistical predictability is
likely possible.” This caution is fully justified especially in
view of the following: if one uses, instead of the quantity
exp�m� used by Caruso et al., the energy calculated from the
seismic moment as described in Ref. �63� or the energy given
by Eq. �8�, the � values both for WWS and NCEC would
result significantly smaller, thus being in better agreement
with the expected range for earthquakes, i.e., when �=� and
��1.6–1.7 as mentioned in Sec. I. By the same token, the q
values obtained from P���� would be considerably altered.
Under these circumstances, it cannot be safely supported that
Eq. �13�, which is anyhow accurate �see also below�, is
obeyed by the actual seismicity data, thus precluding the
existence of long-range temporal correlations between earth-
quake magnitudes �energies�.

In a later study, Bakar and Tirnakli �76� analyzed the
Ehrenfest’s dog-flea SOC model. They obtained the value
�=1.517 for the power-law exponent with extreme precision
�i.e., within the error bars �1.2�10−5�. Then the behavior of
P���� was studied and was numerically shown that it con-
verges to a q-Gaussian with q=2.35, a value coming directly
�and a priori� from Eq. �13�. This, as noticed by Bakar and
Tirnakli, “constitutes the first reliable verification of Caruso
et al. relation �13� since due to insufficient data set of earth-
quakes they were unable to provide clear evidence for their

own relation.” This was achieved using a simple prototype
SOC model �different from the one used by Caruso et al.�
which can be considered as the first clue on the generality of
these results rather than being specific only to this model. In
other words, as also noticed by Bakar and Tirnakli, although
the important relation �13� was obtained by Caruso et al.
they could not check its validity since the earthquake data
they analyzed were not adequate to obtain the � value with
high precision. Consequently, Caruso et al. still used q pa-
rameter as a fitting parameter. On the other hand, since the �
value of Bakar and Tirnakli was very accurate, they substi-
tuted it into Eq. �13� and found the q value as q=2.35. This
is the value that one should use in the q-Gaussian to check
whether P���� resulting from earthquake catalogs can be
approached. �We emphasize that in the procedure of Bakar
and Tirnakli, who did not investigate earthquake data, q is
not a fitting parameter anymore.�

Summarizing our discussion, we can state that the find-
ings of Caruso et al. related with the actual seismicity data
should not be misinterpreted as unambiguously demonstrat-
ing the nonexistence of temporal long-range correlations be-
tween earthquake magnitudes. Such correlations, as men-
tioned in the beginning of this section, do exist as shown
here by the results of the natural time analysis of the actual
seismic data that are strengthened by recent SOC theoretical
investigations �72�.

VI. CONCLUSIONS

Here, we investigated the nonextensive generalization of
the Gutenberg-Richter �G-R� law. We considered only values
of the nonextensive parameter q that have been found in the
recent literature to fit well with the real seismic data. The
results obtained when combining this generalized law with
natural time analysis as well as with DFA show the following
�cf. natural time representation does not involve the interoc-
currence times between seismic events�:

�1� The results of the natural time analysis of the synthetic
seismic data obtained from either G-R law or its nonexten-
sive generalization �Eq. �9�� deviate markedly from those of
the real seismic data for both SCEC �California� and Japan.
This unambiguously reveals that long-range �temporal� cor-
relations between magnitudes exist in the real data sets.

�2� DFA applied to the magnitude time series of the real
seismic data demonstrates independently the existence of
temporal correlations. The DFA exponent is around 0.6 for
short scales but 
=0.8–0.9 for longer scales �cf. the cross-
over is noticed around l�200�.

�3� Inspired by point �2�, temporal correlations, with dif-
ferent 
 values �i.e., 
�0.6 and 0.8–0.9 for short and long
scales, respectively� were inserted to synthetic seismic data
coming from either the G-R law or its nonextensive gener-
alization �Eq. �9��. The natural time analysis of the correlated
synthetic seismic data deduced the from G-R law leads to
results that agree well with those obtained from the real seis-
mic data of Japan and SCEC, thus confirming the importance
of temporal correlations between the magnitudes of succes-
sive earthquakes. As for the synthetic seismic data deduced
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from Eq. �9� by inserting long-range temporal correlations,
satisfactory agreement with real data has been obtained for
the case of Japan for q=1.66 while for SCEC some differ-
ences still remain.

The present results show that the nonextensive parameter
q does not capture the effect of long-range temporal correla-
tions between the magnitudes of successive earthquakes.
Thus, published claims �not by the pioneers of the field of

nonextensive statistical mechanics� that q is a measure of
�temporal� organization do not hold. On the other hand, the
generalization of the G-R law, which is a remarkable
achievement resulted from Tsallis formulation, when com-
bined with natural time analysis �which focuses on the se-
quential order of the energies of the events that appear in
nature� does enable a satisfactory description of the real seis-
mic data fluctuations.
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